Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Reprod Sci ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480649

ABSTRACT

This study investigated the deleterious impact of advanced glycation end products (AGEs), commonly present in metabolic disorders like diabetes, obesity, and infertility-related conditions, on sperm structure and function using a mouse model where AGE generation was heightened through dietary intervention. Five-week-old C57BL/6 mice were divided into two groups, one on a regular diet (control) and the other on an AGE-rich diet. After 13 weeks, various parameters were examined, including fasting blood glucose, body weight, food consumption, sperm parameters and function, testicular superoxide dismutase levels, malondialdehyde content, total antioxidant capacity, Johnson score, AGE receptor (RAGE) content, and carboxymethyl lysine (CML) content. The results showed that mice in the AGE group exhibited increased body weight and elevated fasting blood glucose levels. Furthermore, the AGE group displayed adverse effects on sperm, including reduced sperm counts, motility, increased morphological abnormalities, residual histone, protamine deficiency, sperm DNA fragmentation, reduced testicular antioxidant capacity, and higher levels of RAGE and CML proteins. These findings underscore the negative impact of AGEs on male reproductive health, particularly within the context of metabolic disorders, emphasizing the crucial role of the AGE/RAGE axis in male infertility, especially in the context of Western dietary patterns.

2.
Basic Clin Androl ; 33(1): 33, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38030992

ABSTRACT

BACKGROUND: Sperm DNA integrity is increasingly seen as a critical characteristic determining reproductive success, both in natural reproduction and in assisted reproductive technologies (ART). Despite this awareness, sperm DNA and nuclear integrity tests are still not part of routine examinations for either infertile men or fertile men wishing to assess their reproductive capacity. This is not due to the unavailability of DNA and sperm nuclear integrity tests. On the contrary, several relevant but distinct tests are available and have been used in many clinical trials, which has led to conflicting results and confusion. The reasons for this are mainly the lack of standardization between different clinics and between the tests themselves. In addition, the small number of samples analyzed in these trials has often weakened the value of the analyses performed. In the present work, we used a large cohort of semen samples, covering a wide age range, which were simultaneously evaluated for sperm DNA fragmentation (SDF) using two of the most frequently used SDF assays, namely the TUNEL assay and the sperm chromatin structure assay (SCSA®). At the same time, as standard seminal parameters (sperm motility, sperm morphology, sperm count) were available for these samples, correlations between age, SDF and conventional seminal parameters were analyzed. RESULTS: We show that the SCSA® and TUNEL assessments of SDF produce concordant data. However, the SDF assessed by TUNEL is systematically lower than that assessed by SCSA®. Regardless of the test used, the SDF increases steadily during aging, while the HDS parameter (High DNA stainability assessed via SCSA®) remains unchanged. In the cohort analyzed, conventional sperm parameters do not seem to discriminate with aging. Only sperm volume and motility were significantly lower in the oldest age group analyzed [50-59 years of age]. CONCLUSIONS: In the large cohort analyzed, SDF is an age-dependent parameter, increasing linearly with aging. The SCSA® assessment of SDF and the flow cytometry-assisted TUNEL assessment are well correlated, although TUNEL is less sensitive than SCSA®. This difference in sensitivity should be taken into account in the final assessment of the true level of fragmentation of the sperm nucleus of a given sample. The classical sperm parameters (motility, morphology, sperm count) do not change dramatically with age, making them inadequate to assess the fertility potential of an individual.


RéSUMé: CONTEXTE: l'intégrité de l'ADN des spermatozoïdes est de plus en plus considérée comme une caractéristique essentielle déterminant le succès de la reproduction, tant dans la reproduction naturelle que dans les techniques de reproduction assistée (AMP). Malgré cette prise de conscience, les tests d'intégrité nucléaire des spermatozoïdes ne font toujours pas partie des examens de routine pour les hommes infertiles ou fertiles souhaitant évaluer leur capacité de reproduction. Cette situation n'est pas due à l'indisponibilité des tests. Au contraire, plusieurs tests pertinents mais distincts sont disponibles et ont été utilisés dans de nombreux essais cliniques, ce qui a donné lieu à des résultats contradictoires et à une certaine confusion. Les raisons en sont principalement le manque de normalisation entre les différentes cliniques et entre les tests eux-mêmes. En outre, le petit nombre d'échantillons analysés dans ces essais a souvent affaibli la valeur des analyses effectuées. Dans le présent travail, nous avons utilisé une vaste cohorte d'échantillons, couvrant une large tranche d'âge, évalués simultanément pour la fragmentation de l'ADN des spermatozoïdes à l'aide de deux des tests les plus fréquemment utilisés, à savoir le test TUNEL et le test de la structure de la chromatine des spermatozoïdes (SCSA®). Parallèlement, comme les paramètres séminaux standard (motilité, morphologie, numération) étaient disponibles pour ces échantillons, les corrélations entre l'âge, le niveau de fragmentation et les paramètres séminaux conventionnels ont été analysées. RéSULTATS: Nous montrons que les évaluations SCSA® et TUNEL produisent des données concordantes. Cependant, le SDF évalué par TUNEL est systématiquement plus faible que celui évalué par SCSA®. Quel que soit le test utilisé, la fragmentation augmente régulièrement au cours du vieillissement, alors que le paramètre HDS (« High DNA stainability¼ évalué par le test SCSA®) reste inchangé. Dans la cohorte analysée, les paramètres spermatiques conventionnels ne semblent pas varier avec le vieillissement. Seuls le volume et la mobilité des spermatozoïdes étaient significativement plus faibles dans le groupe d'âge le plus élevé analysé [50­59 ans]. CONCLUSIONS: Dans la grande cohorte analysée, la fragmentation de l'ADN spermatique est un paramètre dépendant de l'âge, augmentant linéairement avec le vieillissement. L'évaluation du SDF par SCSA® et l'évaluation via le test TUNEL assistée par cytométrie de flux sont bien corrélées, bien que le TUNEL soit moins sensible que le SCSA®. Cette différence de sensibilité doit être prise en compte dans l'évaluation finale du niveau réel de fragmentation du noyau des spermatozoïdes d'un échantillon donné. Les paramètres classiques du sperme (motilité, morphologie, nombre de spermatozoïdes) ne changent pas de façon spectaculaire avec l'âge, ce qui les rend inadéquats pour évaluer le potentiel de fertilité d'un individu.

3.
Antioxidants (Basel) ; 12(5)2023 May 05.
Article in English | MEDLINE | ID: mdl-37237912

ABSTRACT

Routine exposure to chemicals omnipresent in the environment, particularly the so-called endocrine-disrupting chemicals (EDCs), has been associated with decreased sperm quality and increased anomalies in testis. The decline in semen quality and testicular abnormalities have been attributed to the disruption of endocrine signaling as well as oxidative stress. The present study set out to examine the effect of short-term exposure of two common EDCs widely used in the plastic industry: Dibutyl Phthalate (DBP) and Bisphenol AF (BPAF). Our research objective was to focus on the post-testicular compartment of the epididymis, where spermatozoa acquire their functional capacity and are stored. The data obtained indicated no significant effect for either chemicals on sperm viability, motility or acrosome integrity. Neither of the EDCs had a noticeable effect on the structures of the testis and epididymis. However, substantial impact on the integrity of the sperm nucleus and DNA structure was evidenced by a significant increase in nuclear decondensation and DNA base oxidation. The damage observed was postulated to arise from the pro-oxidant properties of the EDCs generating excess of reactive oxygen species (ROS) and triggering a state of oxidative stress. This hypothesis was confirmed when the observed damage was largely blocked by co-administering EDCs with an evidenced-based antioxidant formulation.

4.
PLoS One ; 17(12): e0271217, 2022.
Article in English | MEDLINE | ID: mdl-36480503

ABSTRACT

Depression in mammals is known to be associated with poor reproductive capacity. In males, it has been associated with decreased efficiency of spermatogenesis as well as the production of spermatozoa of reduced structural and functional integrity. Although antidepressants are effective in correcting depressive states, there is controversy regarding their effectiveness in restoring male reproductive function. Here, using an animal model of depression induced by a forced swim test, we confirmed that depression is accompanied by impaired male reproductive function. We further show that administration of a conventional antidepressant of the serotonin reuptake inhibitor class (paroxetine) impairs male reproductive performance in terms of sperm production and quality when administered to healthy animals. Intriguingly, when paroxetine is administered to "depressed" animals, it resulted in a complete restoration of the animal's ability to produce sperm that appears to be as capable of meeting the parameters evaluated here as those of control animals. The one-carbon cycle (1CC) is one of the most important metabolic cycles that include the methionine and folate cycles and plays a major role in DNA synthesis, amino acids, and also the production of antioxidants. Our results show that depression affects the main components of this cycle and paroxetine on healthy mice increases homocysteine levels, decreases glycine and vitamin B12, while in depressed mice, it increases folate levels and decreases vitamin B12. Thus, paroxetine exerts negative impacts on male reproductive function when administered to healthy animals and it well correlate with the altered sperm parameters and functions of depressed animals, and its mechanism remains to be explored.


Subject(s)
Paroxetine , Semen , Male , Mice , Animals , Paroxetine/pharmacology , Paroxetine/therapeutic use , Models, Animal , Spermatozoa , Vitamin B 12 , Folic Acid , Mammals
5.
Reproduction ; 164(6): F125-F133, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35938805

ABSTRACT

In brief: Oxidative stress is recognized as an underlying driving factor of both telomere dysfunction and human subfertility/infertility. This review briefly reassesses telomere integrity as a fertility biomarker before proposing a novel, mechanistic rationale for the role of oxidative stress in the seemingly paradoxical lengthening of sperm telomeres with aging. Abstract: The maintenance of redox balance in the male reproductive tract is critical to sperm health and function. Physiological levels of reactive oxygen species (ROS) promote sperm capacitation, while excess ROS exposure, or depleted antioxidant defenses, yields a state of oxidative stress which disrupts their fertilizing capacity and DNA structural integrity. The guanine moiety is the most readily oxidized of the four DNA bases and gets converted to the mutagenic lesion 8-hydroxy-deoxyguanosine (8-OHdG). Numerous studies have also confirmed oxidative stress as a driving factor behind accelerated telomere shortening and dysfunction. Although a clear consensus has not been reached, clinical studies also appear to associate telomere integrity with fertility outcomes in the assisted reproductive technology setting. Intriguingly, while sperm cellular and molecular characteristics make them more susceptible to oxidative insult than any other cell type, they are also the only cell type in which telomere lengthening accompanies aging. This article focuses on the oxidative stress response pathways to propose a mechanism for the explanation of this apparent paradox.


Subject(s)
Antioxidants , Infertility, Male , Male , Humans , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Infertility, Male/metabolism , Semen/metabolism , Spermatozoa/metabolism , Oxidative Stress , Telomere/metabolism , Guanine/metabolism , DNA , Deoxyguanosine/metabolism , Biomarkers/metabolism
6.
Transl Androl Urol ; 11(1): 110-115, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35242646

ABSTRACT

A unique opportunity to conduct a longitudinal analysis of semen quality in a male subject immediately before, during and after COVID-19 infection, has revealed new insights into the impact of this virus on male reproductive function. A moderate COVID infection that did not require hospitalization resulted in a state of azoospermia that persisted for 4 weeks. Given that the duration of spermatogenesis and epididymal sperm maturation in the human is 78 days, we calculate that a viral attack on the germ line was initiated at or before the patient was symptomatic and may have been signalled by a sudden reduction in sperm count and motility, several weeks earlier. Before the virus had been fully cleared, reinitiation of spermatogenesis occurred as evidenced by spermatozoa reappearing in the ejaculate exhibiting high levels of motility but significant levels of oxidative DNA damage as measured by a modified 8-OHdG assay protocol. These unique data indicate that even a moderate COVID-19 infection is capable of rapidly inducing a state of azoospermia that rapidly reverses as the infection wanes.

7.
Antioxidants (Basel) ; 11(2)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35204189

ABSTRACT

Reactive oxygen species (ROS) play a critical role in defining the functional competence of human spermatozoa. When generated in moderate amounts, ROS promote sperm capacitation by facilitating cholesterol efflux from the plasma membrane, enhancing cAMP generation, inducing cytoplasmic alkalinization, increasing intracellular calcium levels, and stimulating the protein phosphorylation events that drive the attainment of a capacitated state. However, when ROS generation is excessive and/or the antioxidant defences of the reproductive system are compromised, a state of oxidative stress may be induced that disrupts the fertilizing capacity of the spermatozoa and the structural integrity of their DNA. This article focusses on the sources of ROS within this system and examines the circumstances under which the adequacy of antioxidant protection might become a limiting factor. Seminal leukocyte contamination can contribute to oxidative stress in the ejaculate while, in the germ line, the dysregulation of electron transport in the sperm mitochondria, elevated NADPH oxidase activity, or the excessive stimulation of amino acid oxidase action are all potential contributors to oxidative stress. A knowledge of the mechanisms responsible for creating such stress within the human ejaculate is essential in order to develop better antioxidant strategies that avoid the unintentional creation of its reductive counterpart.

8.
Basic Clin Androl ; 31(1): 23, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34670490

ABSTRACT

BACKGROUND: The use of flow cytometry (FC) to evaluate sperm DNA fragmentation via deoxynucleotidyl transferase terminal fluorescein dUTP nick-end labeling (TUNEL) has shown inconsistencies compared with conventional fluorescent microscopic analyses. It has been hypothesized that the observed discrepancies could be attributed to the presence of apoptotic bodies that can be labeled with merocyanine 540, the so-called M540 bodies. In order to verify this hypothesis and determine the accuracy of our in-house FC-assisted evaluation of spermatozoa parameters, we used FC to evaluate both the fragmentation of sperm DNA using the TUNEL assay and the oxidation of sperm DNA using the 8-OHdG assay on semen samples with or without M540 bodies. RESULTS: We show that the presence of M540 bodies lead to underestimation of both the level of sperm DNA fragmentation and sperm DNA oxidation when using FC assisted detection systems. We also observed that this situation is particularly pertinent in semen samples classified as abnormal with respect to the routine WHO semen evaluation as they appear to contain more M540 bodies than normal samples. CONCLUSIONS: We conclude that M540 bodies interfere with both FC-conducted assays designed to evaluate sperm nuclear/DNA integrity. Exclusion of these contaminants in unprepared semen samples should be performed in order to correctly appreciate the true level of sperm DNA/nuclear damage which is known to be a critical male factor for reproductive success.


RéSUMé: CONTEXTE: L'utilisation de la cytométrie en flux (CF) pour évaluer la fragmentation de l'ADN des spermatozoïdes via la technique TUNEL (Terminal transferase dUTP nick-end labelling) a montré des incohérences par rapport aux analyses conventionnelles par microscopie fluorescente. L'hypothèse a été émise que les divergences observées pourraient être attribuées à la présence de corps apoptotiques qui peuvent être marqués à la mérocyanine 540 (corps M540). Afin de vérifier cette hypothèse et de déterminer la précision de notre évaluation interne des paramètres des spermatozoïdes, nous avons mesuré par CF à la fois la fragmentation de l'ADN des spermatozoïdes en utilisant le test TUNEL et l'oxydation de l'ADN des spermatozoïdes en utilisant le test 8-OHdG sur des échantillons de sperme avec ou sans corps M540. RéSULTATS: Nous montrons que la présence des corps M540 entraîne une sous-estimation du niveau de fragmentation et d'oxydation de l'ADN des spermatozoïdes lors de l'utilisation de systèmes de détection assistée par CF. Nous avons également observé que cette situation est exacerbée dans les échantillons de sperme classés comme anormaux (selon les standards de l'OMS), car ces derniers semblent contenir plus de corps M540 que les échantillons normaux. CONCLUSIONS: Nous concluons que les corps M540 interfèrent avec les deux tests conduits par CF et conçus pour évaluer l'intégrité nucléaire des spermatozoïdes. L'exclusion de ces contaminants dans les échantillons de sperme non préparés devrait être considérée afin d'apprécier correctement le véritable niveau de dommages au noyau spermatique qui est connu pour être un facteur critique pour le succès reproductif.

9.
Asian J Androl ; 23(1): 52-58, 2021.
Article in English | MEDLINE | ID: mdl-32341213

ABSTRACT

The present study aimed to evaluate the influence of serum vitamin D levels on semen quality and testosterone levels. This is a cross-sectional study conducted at Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Andrology Laboratory in Sao Paulo, Brazil, with 508 male patients, aged 18-60 years, from 2007 to 2017. Seminal parameters and serum sexual hormones were correlated with serum vitamin D concentrations in 260 men selected by strict selection criteria. Patients were divided into normozoospermic group (NZG, n = 124) and a group with seminal abnormalities (SAG, n = 136). Evaluation included complete physical examination, past medical history, habits and lifestyle factors, two complete seminal analysis with sperm functional tests, serum levels of 25-hydroxy-vitamin D3(25(OH)VD3), total and free testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH), sex hormone-binding globulin (SHBG), total cholesterol, homeostatic model assessment of insulin resistance (HOMA-IR) index, and karyotype. The mean concentration of 25(OH)VD3was significantly lower in the SAG (P < 0.001) and positively correlated with all baseline seminal parameters and total testosterone levels. In addition, serum vitamin D3concentration was found to be positively correlated with sperm concentration (ß= 2.103; P < 0.001), total number of spermatozoa with progressive motility (ß = 2.069; P = 0.003), total number of motile spermatozoa (ß = 2.571; P = 0.015), and strict morphology (ß = 0.056; P = 0.006), regardless of other variables. This is the first comparative study to address the issue of serum vitamin D3content between normozoospermic patients and those with sperm abnormalities. It clearly demonstrates a direct and positive relationship between serum vitamin D level and overall semen quality, male reproductive potential, and testosterone levels.


Subject(s)
Semen Analysis , Testosterone/blood , Vitamin D/blood , Adolescent , Adult , Cholesterol/blood , Cross-Sectional Studies , Follicle Stimulating Hormone/blood , Humans , Insulin Resistance , Luteinizing Hormone/blood , Male , Middle Aged , Sex Hormone-Binding Globulin/analysis , Sperm Count , Young Adult
10.
Andrology ; 9(2): 546-558, 2021 03.
Article in English | MEDLINE | ID: mdl-33145958

ABSTRACT

BACKGROUND: Varicocoele (VCL), one of the main causes of male subfertility, negatively affects testicular function. Due to limited access to human testicular tissue, animal model studies have been used to evaluate molecular and, recently, epigenetic changes attributed to pathophysiology induced by VCL. OBJECTIVES: This review aims to provide an update on the latest findings regarding the link between VCL-induced biochemical stress and molecular changes in germ cells and spermatozoa. Endocrine and antioxidant status, testicular chaperone-specific hemostasis failure, altered testicular ion balance, metabolic disorders, and altered carbon cycling during spermatogenesis are among the many features that will be presented. DISCUSSION: Literature review coupled with our own findings suggests that ionic imbalance, hypoxia, hyperthermia, and altered blood flow could lead to severe chronic oxidative and nitrosative stress in patients with VCL leading to defective spermatogenesis and impairment of the integrity of all sperm cell components and compartments down to the epigenetic information they carry. CONCLUSION: Since oxidative stress is an important feature of the reproductive pathology of VCL, therapeutic strategies such as the administration of appropriate antioxidants could be undertaken as a complementary non-invasive treatment line.


Subject(s)
Oxidative Stress , Varicocele/metabolism , Animals , Epigenesis, Genetic , Heat-Shock Response , Humans , Ions/metabolism , Male , Nitrogen/metabolism , Reactive Oxygen Species/metabolism , Testis/metabolism , Varicocele/genetics
11.
Oxid Med Cell Longev ; 2020: 5909306, 2020.
Article in English | MEDLINE | ID: mdl-32802266

ABSTRACT

Using a surgically induced varicocele rat model, we show here strong evidence that the misfolded/unfolded protein response that is part of the stress response of the endoplasmic reticulum (ER) is activated in the varicocele testis (VCL), leading to the induction of apoptosis. To support this hypothesis, it is observed that the spliced variant of the X-box protein 1 (XBP1s), resulting from the activation of the inositol-requiring enzyme 1 (IRE1) membrane sensor, is significantly more represented in VCL testicular extracts. The activation of the IRE1/XBP1s pathway is also supported by the observation that the VCL testes show an increase phosphorylation of the c-Jun-kinase (JNK) known to be one intermediate of this pathway and an increased level of caspase-3, the terminal apoptotic effector, partly explaining the apoptotic status of the VCL testis.


Subject(s)
Endoplasmic Reticulum Stress/genetics , Testis/metabolism , Unfolded Protein Response/genetics , Varicocele/metabolism , Animals , Disease Models, Animal , Humans , Male , Rats
12.
Reprod Fertil Dev ; 28(1-2): 1-10, 2016.
Article in English | MEDLINE | ID: mdl-27062870

ABSTRACT

Spermatozoa are highly vulnerable to oxidative attack because they lack significant antioxidant protection due to the limited volume and restricted distribution of cytoplasmic space in which to house an appropriate armoury of defensive enzymes. In particular, sperm membrane lipids are susceptible to oxidative stress because they abound in significant amounts of polyunsaturated fatty acids. Susceptibility to oxidative attack is further exacerbated by the fact that these cells actively generate reactive oxygen species (ROS) in order to drive the increase in tyrosine phosphorylation associated with sperm capacitation. However, this positive role for ROS is reversed when spermatozoa are stressed. Under these conditions, they default to an intrinsic apoptotic pathway characterised by mitochondrial ROS generation, loss of mitochondrial membrane potential, caspase activation, phosphatidylserine exposure and oxidative DNA damage. In responding to oxidative stress, spermatozoa only possess the first enzyme in the base excision repair pathway, 8-oxoguanine DNA glycosylase. This enzyme catalyses the formation of abasic sites, thereby destabilising the DNA backbone and generating strand breaks. Because oxidative damage to sperm DNA is associated with both miscarriage and developmental abnormalities in the offspring, strategies for the amelioration of such stress, including the development of effective antioxidant formulations, are becoming increasingly urgent.


Subject(s)
Apoptosis , DNA Damage , Infertility, Male/etiology , Lipid Peroxidation , Models, Biological , Oxidative Stress , Spermatozoa/metabolism , Animals , DNA Breaks , DNA Glycosylases/metabolism , Humans , Infertility, Male/metabolism , Infertility, Male/pathology , Male , Phosphorylation , Protein Processing, Post-Translational , Reactive Oxygen Species/metabolism , Sperm Capacitation , Sperm-Ovum Interactions , Spermatozoa/enzymology , Spermatozoa/pathology , Tyrosine/metabolism
13.
Mol Hum Reprod ; 21(6): 502-15, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25837702

ABSTRACT

Oxidative stress is known to compromise human sperm function and to activate the intrinsic apoptotic cascade in these cells. One of the key features of oxidatively stressed spermatozoa is the induction of a lipid peroxidation process that results in the formation of aldehydes potentially capable of disrupting sperm function through the formation of adducts with DNA and key proteins. In this study, we have examined the impact of a range of small molecular mass aldehydes generated as a consequence of lipid peroxidation on human sperm function and also compared the two most commonly formed compounds, 4-hydroxynonenal (4HNE) and malondialdehyde (MDA), for their relative ability to reflect a state of oxidative stress in these cells. Dramatic differences in the bioactivity of individual aldehydes were observed, that generally correlated with the second order rate constants describing their interaction with the model nucleophile, glutathione. Our results demonstrate that acrolein and 4HNE were the most reactive lipid aldehydes, inhibiting sperm motility while augmenting reactive oxygen species production, lipid peroxidation, oxidative DNA damage and caspase activation, in a dose-dependent manner (P < 0.001). In contrast, a variety of saturated aldehydes and the well-known marker of oxidative stress, MDA, were without effect on this cell type. While MDA was not cytotoxic per se, its generation did reflect the induction of oxidative stress in vivo and in vitro in a manner that was highly correlated with the bioactive lipid aldehyde, 4HNE. Despite such overall correlations, individual patient samples were observed in which either MDA or 4HNE predominated. Given the relative cytotoxicity of 4HNE, we propose that this aldehyde should be the preferred criterion for diagnosing oxidative stress in the male germ line.


Subject(s)
Lipid Peroxidation , Oxidative Stress , Spermatozoa/metabolism , Aldehydes/metabolism , Apoptosis , DNA Damage , Humans , Male , Malondialdehyde/metabolism , Reactive Oxygen Species/metabolism , Sperm Motility , Spermatozoa/physiology
14.
Reprod Biomed Online ; 27(4): 325-37, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23948450

ABSTRACT

Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes. It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage and childhood diseases. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the strengths, weaknesses and clinical applicability of current sperm DNA tests. Next, the biological significance of DNA damage in the male germ line is considered. Finally, as sperm DNA damage is often the result of oxidative stress in the male reproductive tract, the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. DNA damage in human spermatozoa is an important attribute of semen quality. It should be part of the clinical work up and properly controlled trials addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency. Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes. It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage and childhood diseases. With all of these fertility check points, it shows more promise than conventional semen parameters from a diagnostic perspective. Despite this, few infertility clinics use it routinely. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the strengths and weaknesses and clinical applicability of current sperm DNA fragmentation tests. Next, the biological significance of DNA damage in the male germ line is considered. Finally, as sperm DNA damage is often the result of increased oxidative stress in the male reproductive tract, the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. As those working in this field of clinical research, we conclude that DNA damage in human spermatozoa is an important attribute of semen quality which should be carefully assessed in the clinical work up of infertile couples and that properly controlled trials addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency.


Subject(s)
DNA Damage , Infertility, Male/genetics , Spermatozoa/physiology , Antioxidants/therapeutic use , Biomarkers , Chromatin/ultrastructure , Comet Assay , DNA Adducts , Female , Humans , In Situ Nick-End Labeling , Infertility, Male/diagnosis , Infertility, Male/therapy , Male , Pregnancy , Semen Analysis , Spermatozoa/ultrastructure
15.
Hum Reprod ; 26(7): 1628-40, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21546386

ABSTRACT

Oxidative stress in the male germ line is thought to affect male fertility and impact upon normal embryonic development. Accordingly, fertility specialists are actively exploring the diagnosis of such stress in spermatozoa and evaluating the possible use of antioxidants to ameliorate this condition. In this review, evidence for the presence of oxidative stress in human spermatozoa, the origins of this phenomenon, its clinical significance in the aetiology of male infertility and recent advances in methods for its diagnosis and treatment are re-examined. Moreover, an extensive review of the results presented in published clinical studies has been conducted to evaluate the overall impact of oral antioxidants on measures of sperm oxidative stress and DNA damage. Administration of antioxidants to infertile men has been assessed in numerous clinical studies with at least 20 reports highlighting its effect on measures of oxidative stress in human spermatozoa. A qualitative but detailed review of the results revealed that 19 of the 20 studies conclusively showed a significant reduction relating to some measure of oxidative stress in these cells. Strong evidence also supports improved motility, particularly in asthenospermic patients. However, of these studies, only 10 reported pregnancy-related outcomes, with 6 reporting positive associations. Adequately powered, placebo-controlled comprehensive clinical trials are now required to establish a clear role for antioxidants in the prevention of oxidative stress in the male germ line, such that the clinical utility of this form of therapy becomes established once and for all.


Subject(s)
Antioxidants/therapeutic use , Infertility, Male/drug therapy , Oxidative Stress , Spermatozoa/metabolism , Administration, Oral , Antioxidants/administration & dosage , Clinical Trials as Topic , DNA Fragmentation , Embryonic Development , Female , Humans , Infertility, Male/metabolism , Male , Pregnancy , Pregnancy Outcome , Sperm Motility/drug effects
16.
Eur J Pharmacol ; 539(1-2): 27-33, 2006 Jun 06.
Article in English | MEDLINE | ID: mdl-16687139

ABSTRACT

Strychnine and brucine from the plant Strychnos nux vomica have been shown to have interesting pharmacological effects on several neurotransmitter receptors, including some members of the superfamily of ligand-gated ion channels. In this study, we have characterised the pharmacological properties of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain of the 5-HT3A serotonin receptor. Although the majority of the analogues displayed significantly increased Ki values at the glycine receptors compared to strychnine and brucine, a few retained the high antagonist potencies of the parent compounds. However, mirroring the pharmacological profiles of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly, quaternization of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an insight into the structure-activity relationships for strychnine and brucine analogues at these ligand-gated ion channels.


Subject(s)
Receptors, Glycine/drug effects , Receptors, Nicotinic/drug effects , Strychnine/analogs & derivatives , Cell Line , Dimerization , Humans , Ion Channel Gating , Ligands , Membrane Potentials , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Radioligand Assay , Receptors, Glycine/physiology , Receptors, Nicotinic/genetics , Receptors, Nicotinic/physiology , Receptors, Serotonin, 5-HT3/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/physiology , Structure-Activity Relationship , Strychnine/chemistry , Strychnine/pharmacology , alpha7 Nicotinic Acetylcholine Receptor
17.
J Med Chem ; 48(4): 1237-43, 2005 Feb 24.
Article in English | MEDLINE | ID: mdl-15715490

ABSTRACT

3-(3-Cyclopentyloxy-4-methoxy-benzyl)-8-isopropyl-adenine V11294 (1) has been identified as a lead structure, which selectively inhibits human lung PDE4 (436 nM) and is also active in a number of in vitro and in vivo models of inflammation. Here we describe the synthesis and pharmacology of a series of highly potent 8-[(benzyloxy)methyl]-substituted analogues, with potencies in the range 10-300 nM. In addition, several compounds showed interesting PDE4 subtype specificities, for example, the 3-thienyl derivative 5v, which showed 6-10 nM potency at PDE4B, D3, and D5 and a 20- to 200-fold selectivity over A and D2, respectively.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , Adenine/analogs & derivatives , Adenine/chemical synthesis , 3',5'-Cyclic-AMP Phosphodiesterases/chemistry , Adenine/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 4 , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Structure-Activity Relationship
18.
J Med Chem ; 47(6): 1547-52, 2004 Mar 11.
Article in English | MEDLINE | ID: mdl-14998340

ABSTRACT

A series of 3-(4-phenoxyphenyl)-1H-pyrazoles were synthesized and characterized as potent state-dependent sodium channel blockers. A limited SAR study was carried out to delineate the chemical requirements for potency. The results indicate that the distal phenyl group is critical for activity but will tolerate lipophilic (+pi) electronegative (+sigma) substituents at the ortho and/or para position. Substitution at the pyrazole nitrogen with a H-bond donor improves potency. Compound 18 showed robust activity in the rat Chung neuropathy paradigm.


Subject(s)
Analgesics/chemical synthesis , Pyrazoles/chemical synthesis , Sodium Channel Blockers/chemical synthesis , Analgesics/chemistry , Analgesics/pharmacology , Animals , Cell Line , Humans , Male , Pain/drug therapy , Pain/etiology , Patch-Clamp Techniques , Peripheral Nervous System Diseases/complications , Peripheral Nervous System Diseases/drug therapy , Pyrazoles/chemistry , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley , Sodium Channel Blockers/chemistry , Sodium Channel Blockers/pharmacology , Structure-Activity Relationship
19.
J Med Chem ; 45(6): 1259-74, 2002 Mar 14.
Article in English | MEDLINE | ID: mdl-11881995

ABSTRACT

Two series of pentacyclic carbazolones, 22 and 23, have been synthesized utilizing a facile intramolecular Dielsminus signAlder reaction and are allosteric modulators at muscarinic acetylcholine receptors. Their affinities and cooperativities with acetylcholine and the antagonist N-methylscopolamine (NMS) at M(1)minus signM(4) receptors have been analyzed and compared. All of the synthesized compounds are negatively cooperative with acetylcholine. In contrast, the majority of the compounds exhibit positive cooperativity with NMS, particularly at M(2) and M(4) receptors. The subtype selectivity, in terms of affinity, was in general M(2) > M(1) > M(4) > M(3). The largest increases in affinity produced by a single substitution of the core structure were given by the 1-OMe (22b) and 1-Cl (22d) derivatives. The position of the N in the ring did not appear to be important for binding affinity or cooperativity. Two compounds 22y and 23i, both trisubstituted analogues, were the most potent compounds synthesized, with dissociation constants of 30minus sign100 nM for the M(2) NMS-liganded and unliganded receptor, respectively. The results indicate that the allosteric site, like the primary binding site, is capable of high-affinity interactions with molecules of relatively low molecular weight.


Subject(s)
Carbazoles/chemical synthesis , Ketones/chemical synthesis , Muscarinic Antagonists/chemical synthesis , Polycyclic Compounds/chemical synthesis , Acetylcholine/metabolism , Allosteric Regulation , Animals , Binding, Competitive , CHO Cells , Carbazoles/pharmacology , Cricetinae , Humans , Ketones/pharmacology , Least-Squares Analysis , Muscarinic Antagonists/pharmacology , N-Methylscopolamine/agonists , Nonlinear Dynamics , Polycyclic Compounds/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...